Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2400538, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600896

RESUMEN

This research adopts a new method combining calcination and pulsed laser irradiation in liquids to induce a controlled phase transformation of Fe, Co, Ni, Cu, and Mn transition-metal-based high-entropy Prussian blue analogs into single-phase spinel high-entropy oxide and face-centered cubic high-entropy alloy (HEA). The synthesized HEA, characterized by its highly conductive nature and reactive surface, demonstrates exceptional performance in capturing low-level nitrite (NO2 -) in an electrolyte, which leads to its efficient conversion into ammonium (NH4 +) with a Faradaic efficiency of 79.77% and N selectivity of 61.49% at -0.8 V versus Ag/AgCl. In addition, the HEA exhibits remarkable durability in the continuous nitrite reduction reaction (NO2 -RR), converting 79.35% of the initial NO2 - into NH4 + with an impressive yield of 1101.48 µm h-1 cm-2. By employing advanced X-ray absorption and in situ electrochemical Raman techniques, this study provides insights into the indirect NO2 -RR, highlighting the versatility and efficacy of HEA in sustainable electrochemical applications.

2.
Environ Geochem Health ; 46(5): 156, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592524

RESUMEN

This study presents a facile preparation and durable amorphous Fe and Al-based MOF nanoplate (AlFe-BTC MOFs) catalyst with notable stability in Fenton reactions. Rigorous characterization using XRD, HR-TEM, and BET confirms the amorphous nature of the synthesized AlFe-BTC MOFs, revealing mesopores (3.4 nm diameter), a substantial surface area (232 m2/g), and a pore volume of 0.69 cc/g. XPS analysis delineates distinct Al2p and Fe2p binding energy values, signifying specific chemical bonding. FE-SEM elemental mapping elucidates the distinctive distribution of Fe and Al within the framework of AlFe-BTC MOFs. In catalytic activity testing, the amorphous AlFe-BTC MOFs exhibited outstanding performance, achieving complete degradation of Methylene blue (MB) dye and 78% TOC removal over 45 min of treatment under mild reaction conditions. The catalyst's durability was assessed, revealing about 75% TOC removal and complete dye decomposition over five successive recycles, with less than 1 mg/L of Fe and Al leaching. UV-Vis spectra revealed the destruction of MB dye over multiple recycling studies. Based on this finding, the amorphous AlFe-BTC MOF nanoplates emerge as a promising solution for efficient dye removal from industrial wastewater, underscoring their potential in advanced environmental remediation processes.


Asunto(s)
Restauración y Remediación Ambiental , Estructuras Metalorgánicas , Industrias , Hierro , Azul de Metileno
3.
ACS Appl Mater Interfaces ; 16(9): 11537-11551, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38361372

RESUMEN

The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as Ni0.6Fe2.4O4@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich Ni0.6Fe2.4O4@NC electrocatalyst exhibits exceptional ORR and OER activities (ΔE = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the Ni0.6Fe2.4O4@NC catalyst demonstrates a peak power density of 187 mW cm-2 and remarkable long-term cycling stability. The flexible solid-state ZAB using the Ni0.6Fe2.4O4@NC catalyst exhibits a power density of 66 mW cm-2. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.

4.
Small ; : e2308443, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258405

RESUMEN

Perovskite oxides exhibit bifunctional activity for both oxygen reduction (ORR) and oxygen evolution reactions (OER), making them prime candidates for energy conversion in applications like fuel cells and metal-air batteries. Their intrinsic catalytic prowess, combined with low-cost, abundance, and diversity, positions them as compelling alternatives to noble metal and metal oxides catalysts. This review encapsulates the nuances of perovskite oxide structures and synthesis techniques, providing insight into pivotal active sites that underscore their bifunctional behavior. The focus centers on the breakthroughs surrounding lanthanum (La) and strontium (Sr)-based perovskite oxides, specifically their roles in zinc-air batteries (ZABs). An introduction to the mechanisms of ORR and OER is provided. Moreover, the light is shed on strategies and determinants central to optimizing the bifunctional performance of La and Sr-based perovskite oxides.

5.
Heliyon ; 9(8): e18638, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576306

RESUMEN

Operando optical microscopy enables imaging at the interface between the Zn electrode and the electrolyte of 1 M ZnSO4(aq) in the symmetrical Zn/Zn cells assembled as the pouch cells with the mechanical load of 0.8 MPa. The imaging was executed during cycling of Zn plating and stripping at the different current densities of 0.5, 1.0, 2.0, and 4.0 mA cm-2, and the areal capacity of 2 mAh·cm-2. When the current densities are below 4.0 mA cm-2, no intense Zn dendrites are observed. However, at 4.0 mA cm-2, the severe Zn dendrites can penetrate through the separator and cause short-circuiting. From the electrochemical perspective, the voltage profile of such system drops to almost zero volt. Both operando optical and ex-situ synchrotron X-ray imaging further prove the appearance of the Zn dendrites. By Raman spectroscopy and X-ray diffraction, the cycled Zn electrode surface contains passivation species of Zn4(OH)6SO4, ZnO, and Zn(OH)2 that could limit the active surface area for the Zn plating/stripping, accelerating the localized current density and favoring the growth of Zn dendrites. With the SiO2 additive of 0.5% w/v in 1 M ZnSO4(aq), the severe Zn dendrites disappear, as well as the cycled Zn/electrolyte interface becomes close to the pristine state; low degree of the Zn electrode roughness and the Zn surface passivation is noticed. The appearance of the claimed Zn surface morphology was also confirmed by Scanning Electron Microscopy (SEM). In turn, too low or too high SiO2 content in the electrolyte does not generate desirable effects. A high level of Zn dendrites and short circuiting are still recognized. Hence, both the operando and ex-situ characterizations can mutually validate the phenomena at the Zn/electrolyte interface.

6.
Nanoscale ; 15(20): 9003-9013, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37128979

RESUMEN

Zinc (Zn) is an excellent material for use as an anode for rechargeable batteries in water-based electrolytes. Nevertheless, the high activity of water leads to Zn corrosion and hydrogen evolution, along with the formation of dendrites on the Zn surface during repeated charge-discharge (CD) cycles. To protect the Zn anode and limit parasitic side reactions, an artificial solid electrolyte interphase (ASEI) protective layer is an effective strategy. Herein, an ASEI made of a covalent organic framework (COFs: HqTp and BpTp) was fabricated on the surface of a Zn anode via Schiff base reactions of aldehyde and amine linkers. It is seen that COFs can regulate the Zn-ion flux, resulting in dendritic-free Zn. COFs can also mitigate the formation of an irreversible passive layer and the hydrogen evolution reaction (HER). Zn plating/stripping tests using a symmetrical cell suggest that HqTpCOF@Zn shows superior stability and greater coulombic efficiency (CE) compared to bare Zn. The full cell having COFs@Zn also displays much improved cyclability. As a result, the COF proves to be a promising ASEI material to enhance the stability of the Zn anode in aqueous media.

8.
Nanoscale ; 15(11): 5519, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36866746

RESUMEN

Correction for 'Tailoring the MOF structure via ligand optimization afforded a dandelion flower like CoS/Co-Nx/CoNi/NiS catalyst to enhance the ORR/OER in zinc-air batteries' by Mohan Gopalakrishnan et al., Nanoscale, 2022, 14, 17908-17920, https://doi.org/10.1039/D2NR04933C.

9.
Nanoscale ; 14(48): 17908-17920, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36468656

RESUMEN

Due to their affordability and good catalytic activity for oxygen reactions, MOF-derived carbon composites containing metal alloys have piqued interest. However, during synthesis, MOFs have the disadvantage of causing significant carbon evaporation, resulting in a reduction of active sites and durability. This study proposes tailoring the molecular structure of MOFs by optimizing bipyridine and flexible 4-aminodiacetic terephthalic acid ligands, which have numerous coordination modes and framework structures, resulting in fascinating architectures. MOF frameworks having optimized N and O units are coordinated with Co and Ni ions to provide MOF precursors that are annealed at 700 °C in argon. The MOF-derived Co9S8/Co-Nx/CoNi/Ni3S2@CNS-4 catalyst exhibits excellent catalytic activity, revealing an ORR half-wave potential of 0.86 V and an overpotential (OER) of 196 mV at 10 mA cm-2, a potential gap of 0.72 V and a Tafel slope of 79 mV dec-1. The proposed strategy allows for the rational design of N-coordinated Co and CoNi alloys attached to ultrathin N, S co-doped graphitic carbon sheets to enhance bifunctional activity and sufficient active sites. Consequently, the zinc-air battery using the synthesized catalyst shows a high peak power density of 206.9 mW cm-2 (Pt/C + RuO2 116.1 mW cm-2), a small polarization voltage of 0.96 V after 370 h at 10 mA cm-2, and an outstanding durability of over 2400 cycles (400 h). The key contributions to the superior performance are the synergetic effects of the CoNi alloys plus the N,S-incorporated carbon skeleton, due to the small charge transfer resistances and enhanced active sites of CoNi, metal-S, and pyridinic N.

10.
Sci Rep ; 12(1): 21156, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477629

RESUMEN

Flow batteries possess several attractive features including long cycle life, flexible design, ease of scaling up, and high safety. They are considered an excellent choice for large-scale energy storage. Carbon felt (CF) electrodes are commonly used as porous electrodes in flow batteries. In vanadium flow batteries, both active materials and discharge products are in a liquid phase, thus leaving no trace on the electrode surface. However, zinc-based flow batteries involve zinc deposition/dissolution, structure and configuration of the electrode significantly determine stability and performance of the battery. Herein, fabrication of a compressed composite using CF with polyvinylidene fluoride (PVDF) is investigated in a Zn-Fe flow battery (ZFB). Graphene (G) is successfully introduced in order to improve its electrochemical activity towards zinc reactions on the negative side of the ZFB. A compressed composite CF electrode offers more uniform electric field and lower nucleation overpotential (NOP) of zinc than a pristine CF, resulting in higher zinc plating/stripping efficiency. Batteries with modified electrodes are seen to provide lower overpotential. Particularly, the G-PVDF-CF electrode demonstrates maximum discharge capacity of 39.6 mAh cm-2 with coulombic efficiency and energy efficiency over 96% and 61%, respectively. Finally, results lead to increased efficiency and cycling stability for flow batteries.

11.
Nanoscale Res Lett ; 17(1): 65, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852712

RESUMEN

Due to their outstanding power density, long cycle life and low cost, supercapacitors have gained much interest. As for supercapacitor electrodes, molybdenum nitrides show promising potential. Molybdenum nitrides, however, are mainly prepared as nanopowders via a chemical route and require binders for the manufacture of electrodes. Such electrodes can impair the performance of supercapacitors. Herein, binder-free chromium (Cr)-doped molybdenum nitride (Mo2N) TFEs having different Cr concentrations are prepared via a reactive co-sputtering technique. The Cr-doped Mo2N films prepared have a cubic phase structure of γ-Mo2N with a minor shift in the (111) plane. While un-doped Mo2N films exhibit a spherical morphology, Cr-doped Mo2N films demonstrate a clear pyramid-like surface morphology. The developed Cr-doped Mo2N films contain 0-7.9 at.% of Cr in Mo2N lattice. A supercapacitor using a Cr-doped Mo2N electrode having the highest concentration of Cr reveals maximum areal capacity of 2780 mC/cm2, which is much higher than that of an un-doped Mo2N electrode (110 mC/cm2). Furthermore, the Cr-doped Mo2N electrode demonstrates excellent cycling stability, achieving ~ 94.6% capacity retention for about 2000 cycles. The reactive co-sputtering proves to be a suitable technique for fabrication of binder-free TFEs for high-performance energy storage device applications.

12.
PLoS One ; 17(5): e0267626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511804

RESUMEN

Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires a large consumption of expensive ILs. This study innovatively employs tetramethyl ammonium chloride ([TMAm][Cl]) as an additive in water medium to associate with microwave-assisted ionic liquid extraction (MAILE) in extracting lipids from Nannochloropsis oceanica (N. oceanica) microalgae. In extraction, knowledge of reaction kinetics is crucial since it provides the foundation for developing, controlling, and improving the processes of extraction. Herein, using MAILE, lipids are extracted from N. oceanica microalgae and transesterified to eicosapentaenoic acid (EPA). Mass transfer kinetics are, therefore, investigated using the first and second-order rate law and Patricelli's model. In the development of models, the influence of temperature (60-90°C) and reaction time (1-25 min) on EPA extraction is empirically evaluated. From the thermodynamic study, the positive values of ΔS (+0.10 kJ mol-1K-1) and ΔH (+32.50 kJ mol-1) and the negative value of ΔG (-1.68 to -4.75 kJ mol-1) confirm that this process is endothermic in nature, irreversible and spontaneous. MAILE proves to be a promising approach for the extraction of high-quality EPAs. Due to its low cost, rapid operation, and environmental friendliness, it is seen to be suitable for both pharmaceutical and nutraceutical applications.


Asunto(s)
Líquidos Iónicos , Microalgas , Estramenopilos , Cloruro de Amonio , Ácido Eicosapentaenoico , Cinética , Microondas , Termodinámica
13.
Nanoscale ; 14(22): 8012-8022, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35612908

RESUMEN

Iron-cobalt (FeCo) oxides dispersed on reduced graphene oxide (rGO) were synthesized from nitrate precursors at loading levels from 10 wt% to 60 wt%. These catalysts were tested in lab-scale zinc-air batteries (ZABs) at a high current density of 100 mA cm-2 of the cathode area for the first time, cycling between 60 min of discharging and 60 min of charging. The optimum loading level for the best ZAB cycling performance was found to be 40 wt%, at which CoFe2O4 and CoO nanocrystals were detected. A discharge capacity of at least 90% was maintained for about 60 cycles with FeCo 40 wt%, demonstrating superior stability over amorphous FeCo oxides with FeCo 10 wt% despite similar performance at electrochemical tests. At a high current density of 100 mA cm-2, OER catalytic activity was found to be the limiting factor in ZAB's cyclability. The discrepancies between the ORR/OER catalytic activities by electrochemical and battery cycling test results highlight the role and importance of rGO in improving electrical conductivity and activation of metal oxide electrocatalysts under high current density conditions. The difference of battery cycling test results from traditional electrochemical test results suggests that electrochemical tests conducted at low current densities may be inadequate in predicting practical battery cycling performance.

14.
Chem Commun (Camb) ; 57(61): 7549-7552, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240089

RESUMEN

Aqueous zinc-ion batteries (ZIBs) with exceptional safety and cost-effective features have captured researchers' attention, but the cathode materials available still need to be further explored. Herein, a flower-like W/WO3 hybrid is developed as a cathode of ZIBs. Impressively, the W/WO3-ZIBs exhibit extraordinary rate performance (158 mA h g-1 under 0.1 A g-1) and remarkable cycling performance (96% over 1000 cycles). Additionally, an electrochemical mechanism based on reversible Zn2+ insertion/extraction in W/WO3 is firstly demonstrated, and the impressive flexibility and excellent capabilities of the soft-packaged batteries are also realized. Therefore, this research will pave a novel consideration of metal/metal oxide hybrids in designing cathodes of ZIBs with high electrochemical performance.

15.
Heliyon ; 6(10): e05391, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33150216

RESUMEN

The aim of this research is an evaluation of polyelectrolytes. In the application of zinc-iodine batteries (ZIBs), polyelectrolytes have high stability, good cationic exchange properties and high ionic conductivity. Polyelectrolytes are also cost-effective. Important component of ZIBs are cation exchange membranes (CEMs). CEMs prevent the crossover of iodine and polyiodide from zinc (Zn) electrodes. However, available CEMs are costly and have limited ionic conductivity at room temperature. CEMs are low-cost, have high stability and good cationic exchange properties. Herein, polyelectrolyte membranes prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) are examined. It is seen that an increase in the ratio of PVA leads to enhanced ionic conductivity as well as increased iodine and polyiodide crossover. ZIBs using polyelectrolytes having 75:25 wt.% CMC/PVA and 50:50 wt.% CMC/PVA show decent performance and cycling stability. Due to their low-cost and other salient features, CMC/PVA polyelectrolytes prove they have the capacity for use as cation exchange separators in ZIBs.

16.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023274

RESUMEN

Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos/química , Compuestos de Potasio/química , Sulfatos/química , Zinc/química , Aire , Electrólitos/farmacología , Compuestos de Potasio/farmacología , Sulfatos/farmacología
17.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992723

RESUMEN

Membrane separators are one of the critical components in zinc-air batteries (ZABs). In the control of mass transfer, and hence, electrochemical reaction, membrane separators have an important role to play. This work addresses the issue of battery performance in a ZAB via a new composite membrane separator based on polyvinyl alcohol (PVA). To enhance the electrolyte uptake and ionic conductivity, mesoporous Mobil Composition of Matter No. 41 (MCM-41) is incorporated as a filler in the membrane while maintaining its integrity. The presence of MCM-41 is seen to reduce the number of cycles of secondary ZABs due to the uninvited drawbacks of increased zincate crossover and reduced triple phase boundary at the air cathode, which is pivotal for oxygen reduction reaction. Overall, results suggest that the application of the MCM-41/PVA composite has the potential for use as a separator in high-capacity primary ZABs.

18.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630149

RESUMEN

Due to their cost effectiveness, high safety, and eco-friendliness, zinc-ion batteries (ZIBs) are receiving much attention nowadays. In the production of rechargeable ZIBs, the cathode plays an important role. Manganese oxide (MnO2) is considered the most promising and widely investigated intercalation cathode material. Nonetheless, MnO2 cathodes are subjected to challenging issues viz. limited capacity, low rate capability and poor cycling stability. It is seen that the MnO2 heterostructure can enable long-term cycling stability in different types of energy devices. Herein, a versatile chemical method for the preparation of MnO2 heterostructure on multi-walled carbon nanotubes (MNH-CNT) is reported. Besides, the synthesized MNH-CNT is composed of δ-MnO2 and γ-MnO2. A ZIB using the MNH-CNT cathode delivers a high initial discharge capacity of 236 mAh g-1 at 400 mA g-1, 108 mAh g-1 at 1600 mA g-1 and excellent cycling stability. A pseudocapacitive behavior investigation demonstrates fast zinc ion diffusion via a diffusion-controlled process with low capacitive contribution. Overall, the MNH-CNT cathode is seen to exhibit superior electrochemical performance. This work presents new opportunities for improving the discharge capacity and cycling stability of aqueous ZIBs.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Compuestos de Manganeso/química , Nanotubos de Carbono/química , Óxidos/química , Electrodos , Permanganato de Potasio
19.
Sci Data ; 7(1): 196, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572034

RESUMEN

Nowadays, due to global warming stemming from excessive use of fossil fuel, there is considerable interest in promoting renewable energy sources. However, because of the intermittent nature of these energy sources, efficient energy storage systems are needed. In this regard, zinc-air flow batteries (ZAFBs) are seen as having the capability to fulfill this function. In flow batteries, the electrolyte is stored in external tanks and circulated through the cell. This study provides the requisite experimental data for parameter estimation as well as model validation of ZAFBs. Each data set includes: current (mA), voltage (V), capacity (mAh), specific capacity (mAh/g), energy (Wh), specific energy (mWh/g) and discharge time (h:min:s.ms). Discharge data involved forty experiments with discharge current in the range of 100-200 mA, and electrolyte flow rates in the range of 0-140 ml/min. Such data are crucial for the modelling and theoretical/experimental analysis of ZAFBs.

20.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354107

RESUMEN

Recently, rechargeable zinc-ion batteries (ZIBs) have gained a considerable amount of attention due to their high safety, low toxicity, abundance, and low cost. Traditionally, a composite manganese oxide (MnO2) and a conductive carbon having a polymeric binder are used as a positive electrode. In general, a binder is employed to bond all materials together and to prevent detachment and dissolution of the active materials. Herein, the synthesis of α-MnO2 nanowires on carbon cloth via a simple one-step hydrothermal process and its electrochemical performance, as a binder-free cathode in aqueous and nonaqueous-based ZIBs, is duly reported. Morphological and elemental analyses reveal a single crystal α-MnO2 having homogeneous nanowire morphology with preferential growth along {001}. It is significant that analysis of the electrochemical performance of the α-MnO2 nanowires demonstrates more stable capacity and superior cyclability in a dimethyl sulfoxide (DMSO) electrolyte ZIB than in an aqueous electrolyte system. This is because DMSO can prevent irreversible proton insertion as well as unfavorable dendritic zinc deposition. The application of the binder-free α-MnO2 nanowires cathode in DMSO can promote follow-up research on the high cyclability of ZIBs.


Asunto(s)
Carbono/química , Compuestos de Manganeso/química , Óxidos/química , Zinc/química , Dimetilsulfóxido/química , Suministros de Energía Eléctrica , Técnicas Electroquímicas , Electrodos , Diseño de Equipo , Nanocables , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...